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Abstract—A boundary clement analysis, for determining stress in planar cracked bodies undergoing
Mode I or Mode 11 inelastic deformation, has been recently published by the present authors[14, 15). One
primary advantage of this formulation is that the effect of the crack is incorporated in the kernels of the
integral equations. Thus, traction free conditions on the crack boundary are satisfied without discretization
of this boundary in a numerical calculation procedure.

The inelastic deformation of cracked plates loaded in anti-plane shear (Mode 11I) is studied in this paper.
Modified kernels are used so that the only unknowns in the integral equation are source strengths on the
outer boundary of the plate. It is proved that this formulation guarantees traction free cracks as well as
single valued displacements on the crack boundary, Numerical results for stresses are presented for various
loading histories with the plate material described by an elastic-nonlinear power law creep constitutive
model and a stationary crack modelled as a very thin ellipse.

INTRODUCTION

The boundary element method (BEM—also called the boundary-integral equation method) has
been gathering momentum in recent years as a powerful general purpose method for the
solution of problems in engineering science (see, e.g. Refs. [1-4] which mainly contain
mechanics related applications). The present authors, together with others, have been interested
for some time in the application of the BEM to problems of time-dependent inelastic
deformation[5-10]. Planar and plate bending problems are considered in these papers. The
governing differential equations are written in rate form and these are transformed to integral
equations, using, as kernels, singular solutions of the equations in an infinite domain.

This approach works well in the problems considered in Refs.[5-10] but can present
problems if applied to bodies with sharp cutouts or cracks. This is because adequate discrete
modelling of crack boundaries usually requires a large nunber of boundary elements in order to
obtain the stresses accurately near crack tips. This number can become prohibitive in some
problems and may lead to numerical difficulties. An elegant alternative formulation for planar
elastic problems for bodies with cutouts appears in Refs.{11-13]. In this approach, the singular
kernels for an infinite domain are augmented so that the new kernels are singular solutions for
infinite domains with cutouts, with the proper boundary conditions (e.g. traction free) satisfied
on the cutout surface. Thus, the effect of the cutout on the stress and displacement fields is
incorporated in the kernels and discrete modelling of the cutout boundary is no longer
necessary.

The principle of linear superposition is used to advantage in the papers[11-13] in order to
derive the augmented kernels. This principle, of course, is no longer valid for nonlinear inelastic
problems. However, the present authors, in two recent publications{14, 15}, have used this idea
to calculate stresses near crack-tips in planar bodies undergoing time-dependent inelastic
deformation. The governing nonhomogeneous biharmonic equation for the rate of the stress
function is transformed into an integral equation using augmented kernels which guarantee
traction-free cutouts. Stress histories for cracked plates undergoing Mode I and Mode II
deformation have been obtained numerically for various cases and these are presented in Ref.
[15).

The inelastic deformation of cracked plates loaded in anti-plane shear (Mode III) is the
subject of this paper. In this problem the rate of the stress function satisfies Poisson’s equation.
The paper begins with the well known single layer potential solution for Laplace’s equation in a
simply connected finite domain. A region with a cutout is considered next and the kernels are
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augmented so that the new kernels guarantee that the cutout surface is traction free. Explicit
kernels for elliptical cutouts are obtained by using a method analogous to the circle theorem of
Milne-Thomson[16]. Integral equations for the stress rates are derived and it is proved that this
formulation gives single valued displacements on the cutout. These integral equations are
solved numerically and numerical results are presented for the time-dependent redistribution of
stresses near the crack tips. The plate material is modelled by the elastic-power-law creep
constitutive equations and the stationary cracks are modelled as very thin ellipses. These
numerical solutions complement analytical solutions for stresses near crack tips in creeping
solids obtained by asymptotic methods[17]. However, in this analysis, elastic and nonelastic
strains are allowed to coexist near the crack tip. Thus, the complete equations are solved
everywhere and there is no need to match near and far field solutions. Also, a single valued
displacement field is assured on the crack surface.

GOVERNING DIFFERENTIAL EQUATIONS

A planar body, with the x; and x, axes in the plane of the body and the x, axis normal to it,
is loaded in anti-plane shear. The nonzero stress components are o3,(= 03) and o5, (= 05;) and
a stress function @ is defined in the usual way such that

ou=2,  gy=-22 M
2 1

The nonzero strain rates, é,; and €3, are linearly decomposed into the elastic and nonelastic
rates, so that the compatibility equation, in rate form, is

s (3605 o
ax,  dx, ax, dx;/°

Using Hooke’s law to write the elastic strain rates in eqn (2) in terms of the stress rates and
writing the stress rates in terms of ® from eqn (1), results in Poisson’s equation for the rate of
the stress function

2= — a_Lu]
Vi 20[ S )

where V2 is the Laplacian operator in two-dimensions and G is the shear modulus of the
material.

Only traction boundary conditions are allowed in this analysis. The traction 7= r at any
point on the boundary of the body equals the tangential derivative of the stress function

_do
"7 e “

where c is the distance measured along a boundary in an anticlockwise sense.

BOUNDARY ELEMENT FORMULATION
Simply connected body
The Poisson’s equation (3) can be transformed into an integral equation by using a single
layer potential

27d(p) = £ _(n5),C(Q) deg + L (In 5)peC™(q) dA, ©)

where C is the boundary density function (or the source strength function in the language of
fluid dynamics) to be determined from the boundary conditions, s is the distance between the
source point p (or P) and the field point g (or Q) (where lower case letters denote points inside
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Fig. 1.

the body B and capital letters denote points on its boundary B (Fig. 1)) and

Cms_m(és's.n_éé“a),
ox, ox;

This equation can alternatively be written in terms of the kernel

K =Re[é(2, 2,)]

as

27d(p) = fw K(p, Q)C(Q)dcy + J; K(p, q)C*"(q)dA, (©)
where

é(z,20) =In(z - 2),

Re denotes the real part of the complex argument and z and z, are the source and field points
respectively (see Fig. 1).

Body with cutout

Augmented kernels. The singular kernel K is augmented with regular kernels such that the
sum of these guarantee a traction free cutout. Let the cutout boundary be 2B, (Fig. 2). If the
stress function @ is constant on 3B,, the traction on it is zero by virtue of eqn (4). This constant
can be taken to be zero without loss of generality.

Suppose first that the cutout is a unit circle. Let a function ¢* be defined as

$*(20)=-In (3~ z0)

Fig. 2.
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This function has the following properties
(a) ¢* satisfies Laplace’s equation.
(b) ¢* is regular outside the unit circle |z|= 1.

() 6(2,7,20) = 62,2+ $* (2,200 =In (2 = 2) = In (3 20) M

vanishes on the unit circle [z| = 1.

Thus, if a kernel defined as the real part of ¢ is used in a formulation analogous to eqn (6)
for a body with a circular cutout, the cutout will be traction free. The derivation of ¢* is
analogous to the circle theorem of Milne-Thomson[15] for two-dimensional irrotational in-
compressible inviscid flow of a fluid past a circular cylinder.

The function ¢* for an elliptic cutout is derived by making use of conformal mapping
techniques. The mapping function

2= w(§)=§+mf ®)

transforms the region on and outside an ellipse in the z plane to the region on and inside a unit
circle in the £ plane (see Fig. 1 in Ref. [15]). The parameter m =(a—b)/(a+b) (with
(a+b)/2=1) in terms of the semimajor and minor axes, a and b respectively, of the ellipse.
Thus, m = 1 represents a line crack. Now

4;=ln(z-z°)=ln(é+m§—zo)=lnm+ln(§—ro)+ln(1—nlf) )

where ro; =(2p+ /(22 —4m)/2m) are the roots of mg*—zp£+1=0 with |r|2 1, |n|=1 and
£=(zx/(2*-4m)2m) with |¢|=<1.

The last term in eqn (9) has singularities at £ =0 and ¢ = r; inside the unit circle in the ¢
plane. For this case, let

¢*=~Inm-ln(¢-r)-In(1-r
so that
$(z,52)=d+¢*=In(1-r/&)~In(1 - r). (10)

This function vanishes on the unit circle [¢] = 1 (and therefore on the elliptical cutout in the z
plane) and satisfies the other properties required of the augmented kernel.

Single valued displacement on cutout boundary. The only nonzero displacement u#, must be
single valued on the cutout boundary, i.e. it is required that

duy = 0. 1

aB,

This equation can be written in terms of the stress function ¢ by extending the analysis of
Sokolnikoff [18] for the torsion of hollow beams, to this nonelastic case. The resulting equation
is

g%dc= D™®-.ndc (12)

33. aB.
where n is the unit outward normal to the cutout surface (Fig. 2) and
D|(') = 20552, Dz(n) == ZG€;| . (13)

Note that V- D™ = O™,
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Integral equations for stresses and tractions

Integral equations. The time-histories of the stress components o3, and o3; are of primary
interest in this analysis. Thus, it is convenient to write integral equations directly for the stress
rates using differentiated versions of the kernel ¢. For a body with an elliptic cutout (Fig. 3), the
equations for the rates of stress are (with j, k=1,2)

2wy () = fm Hy(p, QC(Q) deg + L Hy(, )C"(q) dA,

- f _ Hy(p, Q) DM(Om(Q) deg (14)

where the augmented kernels Hj; are

Hy=Re[ 27,2 | =1n (2-%2)

Hy=-Re [%% @3 zo)] =-Re (%%%‘g) 1)

with ¢ given in eqn (10).

The first two terms in eqn (14) are analogous to eqn (6) and the last term, which represents a
layer of concentration n- D™ on the cutout boundary 4B,, is necessary for obtaining single
valued displacements on 4B,. This is proved in the next subsection.

The boundary conditons for the problem are specified in terms of traction rates on the outer
boundary aB,. The traction rates are obtained from eqn (14) by taking the limit as p in B
approaches a point P on dB,. In taking this limit, care must be taken to obtain the residues from
the singular kernels. It can be shown that for the rates of stress

if 21"0.'3,(p*) = h(p*)
then 2703 (P*) = h(P*)+ wt;(P*)C(P*) (16)

where p* is infinitesimally close to P*, 4B, is locally smooth at P* and t;(P*) are the
components of the unit (anticlockwise) tangent vector to B, at P*. The function h(p*) is an
abbreviation for the right hand side of eqn (14). This implies that the residue is zero for the
traction rate and equals C(P)/2 for the stress rate component o;. tangential to the boundary.

Fig. 3.
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The traction rate therefore, for a point P on dB, where it is locally smooth, is, from eqn (14)
(with j,k=1,2)

2wiP)=§ Hy(P, Qu(PICQ deq+ [ Hy(P,am(PIC™ (@) 44,
~§_Hy(P, Qn(PDIQIM(Q dce 17

The boundary integrals in the above must be interpreted in the sense of Cauchy principal
values. It can be proved that Hs, and Hj,, with an arbitrary source point, are independent of
the position of the field point provided it lies on the elliptic cutout. This makes the last terms in
eqns (14) and (17) considerably easier to evaluate.

) Proof of single valued displacements on elliptic cutout boundary. The normal derivative of
& at a point P an 4B, (see Fig. 2) from eqn (14), is

27 Gy () =20(Gam=um) =§, Re [ (2. 0| 0@ dee
d : d ,
+[ re[Ep0]c@aa+d re[FEr 0] DE@UQUE B

the positive sign on the last term being a consequence of the fact that n is the outward normal
to dB,. The normal derivatives of the kernel ¢ are evaluated at the source point P on 4B;.
There is no extra term due to a residue in this case.

The proof of eqn (12) for single valued displacements on 3B, rests on the fact that, if the
cutout is elliptiptic

do - {0 if q is outside 4B,
f;,,, Re [dn ®.9)der = "% QisondB, ' 19

Proof of eqn (19) is sketched briefly below. The above result is also true in the limiting cases
when the cutout is a circle or a line crack.
If a source point lies on the elliptical cutout 4B,

z={l+m)cosa+i(l-m)sina
g=e

where 0<a<2n.
Let n, and n, be the components of the outward normal to 4B, at some point on it. Then

iy g = e
T IRT (T + mi~2m cos 2a)

and a line element on the ellipse

dc =(1+m?*-2m cos 2a) da.
Let an arbitrary field point z, yield the root (see below eqn (9))

n=ge"® ( B =1if zyis on 3B, )
! ' \B<1if zis outside B,/

Using all the above equations and eqn (10) for ¢(z, Z, z,),

d¢ ] = [éé- é_é":] __2l-dcos(a~-9)
Re{dn(P,Q) dcp =Re azn+af” dep 52-25¢08(a—8)+1da

where 8 =1/821, i = n,;—in, and P is on 4B,.
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Now, with y =a -8
wa 2(1- 8 cos ) dy = {0 if 8 > 1 (zooutside 4B,)
o 8°—20cosy+1 27 if 6 = I(zo0n dB;)

which proves eqn (19).
Finally, integrating both sides of eqn (18) around 4B, and evaluating first the integrals around
3B, in the resulting double integrals on the r.h.s. of eqn (18),

wa ggdc =27¢ DMn dc
551

dn 2B,
which proves eqn (12).

NUMERICAL IMPLEMENTATION
Discretization of equations
The outer boundary of the body, dB, (Fig. 3), is divided into N, straight
boundary elements using N, (N, = N,) boundary nodes and the inner boundary 4B, into N, straight
boundary segments. The interior of the body, B, is divided into n; triangular internal elements. A
discretized version of eqn (17) is

20#(Py) = ; L Hy(Py, Qnj(Py)C(Q)dcg+ fM Hyi(Py, 9)n;(Py ) C™(q)DA,
2 € R; i

- Hy(Pu OnPu) 3 [ DINQm(Q) de 0)

where 7(P)) are the traction components at the point P which coincides with the node M at
the center of a segment on dB,, Ac; and AA; are boundary and internal elements respectively
and Q is any point on 4B,.

A very simple numerical scheme is used in which the concentrations C are assumed to be
piecewise uniform on each boundary segment with their values assigned at the nodes which lie at
the centers of each segment. The nonelastic strain rates é3; are interpolated linearly over each
triangular internal element so that C™ is uniform within each element. For the problems
considered in this section, the last integral in eqn (17) can be shown to vanish, i.e. in these cases

pD™.-ndc=0

aB,

by virtue of the stress pattern and the constitutive model. Hence the last term in eqn (20) is
omitted in these calculations. In any case, in general, this term requires the evaluation of a
known integral on B, at each time step.

The integrals of H;; on boundary elements are evaluated analytically for the singular and by
Gaussian quadrature for the regular portions. Integrals of Hj; on a triangular internal elements
are obtained by Gaussian quadrature. This is adequate in these problems with the source points
lying on the vertices of the traingles.

Substitution of the piecewise uniform source strengths into eqn (20) and carrying out of the
necessary integrations leads to an algebraic system of the type

{#}=[A}{C}+{d}. @n

The coefficients of the matrix [A] contain boundary integrals of the kernels. The traction
rates are prescribed, the vector {d} contains the contributions from the area integral and the vector
{C} the unknown source strengths at the boundary nodes. The dimension of the unknown vector C
depends only on the number of boundary elements on 3B,.

Equation (14) for the stress rates at an internal point p are discretized in a similar fashion.
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Solution strategy

The power law creep constitutive model, used to describe material behavior, has the
form[19]

E.,',' = Efj + E,’;
]

.3
=35 @

my
. (T
E"=¢€ (—-—)
g,

where the stress and strain rate invariant are defined as

a=V(B312)sysi), € =V(23)éLé;:

with s; the deviatoric part of the stress tensor oy, €. and o the reference strain rate and
reference stress rate, respectively, and m; the index of the power law.

The solution strategy is as follows. The initial stress field is obtained by solving the
corresponding elastic problem. The initial rates of the nonelastic strains are obtained from the
constitutive model (22). The vector d in eqn (21) is calculated next, and this, together with the
prescribed rates of boundary tractions, are used to calculate the initial distribution of concen-
tration C onto aB;. These concentrations are now used in the discretized version of eqn (14) to
calculate the initial stress rates throughout the body. These rates are used to determine the values of
the variables after a small time interval Af and so on, and in this way the time histories of the relevant
variables are obtained. Time integration is carried out by an Euler type step-wise procedure with
automatic time-step control. This method is described in Refs, [15, 201,

NUMERICAL RESULTS AND DISCUSSION
Material parameters
The material parameters for stainless steel at 400°C, used in these numerical calculations,
are[19]

G=94x10°psi
€ =0277x10%s™" ¢, =0.1806 X 10° psi

m°=7.

Numerical results

Elastic solution. In order to check the program, an elastic solution is first obtained for a
finite plate with a line crack (m = 1) loaded in anti-plane shear. The stress distribution has a
pattern which makes it possible to deduce the stresses in the entire plate from the stresses in
the first quadrant. Thus only a quarter of the plate (the first quadrant in this case) is discretized.
Eight boundary nodes are placed uniformly along the edges of the plate in the first quadrant.
The elastic solution for o4,, obtained numerically, has the proper square root singularly near the
crack tip. The calculated value of the stress intensity factor is within 5% of the analytical
solution for an infinite plate with a crack{21].

Nonelastic solutions. A stationary crack is modelled as an ellipse with axis ratio 199
(m =0.99) except for the results shown in Fig. 8 ‘where a/b = 1999 (m =0.999). The cracked
plate is loaded in anti-plane shear as shown in Fig. 4(a). Once again, only a quarter of the plate
is discretized. Twenty boundary nodes are distributed uniformly along the edges of the plate in
the first quadrant. High concentrations of stresses and consequently strain rates, are present
near the crack tips. Therefore, only the region very near the tip of the major axis of the ellipse
is discretized into internal elements (Figs. 4a and 4b) and it is assumed that all the nonelastic
contribution to the stress rates in eqn (14) is obtained from this discretized area. (As stated
earlier, the last term in eqn (14) is zero in these problems.) Thus, in addition to the fact that the
number of unknowns depend only on the number of boundary elements, evaluation of area
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Fig. 4. Internal elements for a cracked plate loaded in antiplane shear.

integrals by quadrature is greatly simplified by the fact that only a small portion of this area
needs to be discretized. Input time as well as computational time is reduced since relatively few
internal elements are necessary. These simplifications are important advantages of the boun-
dary element method relative to the finite element method and lead to substantial savings in cost.

The decrease of stress concentration at the crack tip as a function of time, for the case of
constant remote stress, is shown in Fig. 5. The decrease is due to flow of the material near the
crack tip and consequent accommodation of stress. The redistribution of stress concentration
with time along the line x, =0 near the crack tip is shown in Fig. 6. The near field stress
distribution tends to even out with time.

Figure 7 shows the drops in stress concentration at the crack tip as functions of time for two
different rates of remote loading. Stress relaxation is less at the higher loading rate since there
is less time for nonelastic flow in this case. Also, very little stress relaxation takes place at very

BN
"
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g 200}
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2 5ot
o
€
[
g 100
(-3
o
" k
® S50
o
0 3060 4000 6000
Time (s)
Fig. 5. Stress concentration at crack tip as a function of time for constant remote stress o3; = 1000 psi, a/b = 199.
Initial stress concentration ~ 204,

§S Vol. 17, No. 8—C
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Fig. 6. Stress redistribution along the line x, =0 ;ln cracked plate for constant remote stress o3; = 1000 psi,
b =19.
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Fig. 7. Stress concentration at crack tip as functions of remote stress for remote stress increasing at a constant
rate. a/b = 199.

short times while the remote stress is builiding up. The stress concentration at large values of
the remote stress is of the same order as the long time values from Fig. § for the constant
remote stress case.

Finally, Fig. 8 shows the drop in stress concentration at the crack tip when the crack is
modelled as a very sharp ellipse of axis ratio 1999. There is no numerical difficulty in carrying
out this calculation since, as stated before, the effect of the crack is included in the kernel and
the only unknow quantities in the algebraic equations are on the outer boundary of the plate. In
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1500

Stress Concentration o35/03p
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L)

0 50 100 150 200 250
Time (s)

Fig. 8. Stress concentration at crack tip as a f:lnction of time for constant remote stress o3, = 1000 psi,
b=1999.
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this case, a different internal mesh is used. This mesh is not shown here in the interest of brevity
but is included in a report with the same title [22].

The numerical results presented in this section are stable. A typical c.p.u. time on an IBM
370/168 computer is 179 sec for the results shown in Fig. 8 for m =0.999.

CONCLUSIONS

The boundary element formulation with augmented kernels used in this paper is very
efficient for the analysis of stresses in cracked plates undergoing inelastic deformation. The
primary reasons for this claim are as follows.

(1) The proper boundary conditions on the crack boundary are satisfied in an implicit
manner.

(2) The only unknowns appear on the outside boundary of the plate.

(3) Internal discretization is required over only a small region near the crack tip. Area
integrals over this region involve known integrands at every time step and these are evaluated
by quadrature over relatively few internal elements.

(4) No apriori assumptions regarding the stress distribution near the crack tip need to be
made.

The method yields stable numerical results for different histories of remote loading even for
a crack modelled as a very thin ellipse of aspect ratio near 2000,
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Cornell Univerisity.
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