
1/11. J. SoIiII,Sl"",'/Ut' Vol. 17. pp. 75)...763. 1981
Pri.led i. Gr.11 Brirai.

0026-7613/BI/OI07S3-II$02.00/0
P......o. Pm, Ltd.

BOUNDARY ELEMENT ANALYSIS OF
TIME-DEPENDENT INELASTIC DEFORMATION OF

CRACKED PLATES LOADED IN ANTI-PLANE SHEAR

SUBRATA MUKHERJEE and MAHESH MORJARIA
Department of Theoretical and Applied Mechanics. Thurston Hall, Cornell University, Ithaca, NY 14853,

U.S.A.

(Received 8 August 1980)

AIIItract-A boundary element lllaiysis. for determinilll stress in planar cracked bodies underaoing
Mode I or Mode Uinelutic deformation, has been recendy published by the present authors [14. 15). One
primary advantaae of this formulation is that the elect of the crack is incorporated in the kernels of the
intepl equations. Thus. traction free conditions on the crack boundary are satisfied without discretization
of this boundary in a numerical calculation procedure.

The inelutic defomation of cracked plates loaded in anti-plane shear (Mode U1) is studied in this paper.
Modified kernels are used so that the only unknowns in the intepl equation are source strenaths on the
outer boundary of the plate. It is proved that this formulation guarantees traction free cracks as well u
single valued displacements on the crack boundary. Numerical results for stresses are presented for various
loadilll histories with the plate material described by an elastic-nonlinear power law creep constitutive
model and a stationary crack modelled u a very thin ellipse.

INTRODUCTION
The boundary element method (BEM-also called the boundary-integral equation method) has
been gathering momentum in recent years as a powerful general purpose method for the
solution of problems in engineering science (see, e.g. Refs. [1-4] which mainly contain
mechanics related applications). The present authors, together with others, have been interested
for some time in the application of the BEM to problems of time-dependent inelastic
deformation [S-10]. Planar and plate bending problems are considered in these papers. The
governing differential equations are written in rate form and these are transformed to integral
equations, using, as kernels, singular solutions of the equations in an infinite domain.

This approach works well in the problems considered in Refs.[S-10] but can present
problems if applied to bodies with sharp cutouts or cracks. This is because adequate discrete
modelling of crack boundaries usually requires a large nunber of boundary elements in order to
obtain the stresses accurately near crack tips. This number can become prohibitive in some
problems and may lead to numerical diffiCUlties. An elegant alternative formUlation for planar
elastic problems for bodies with cutouts appears in Refs. [ll-t3]. In this approach, the singular
kernels for an infinite domain are augmented so that the new kernels are singular solutions for
infinite domains with cutouts, with the proper boundary conditions (e.g. traction free) satisfied
on the cutout surface. Thus, the effect of the cutout on the stress and displacement fields is
incorporated in the kernels and discrete modelling of the cutout boundary is no longer
necessary.

The principle of linear superposition is used to advantage in the papers[11-13] in order to
derive the augmented kernels. This principle, of course, is no longer valid for nonlinear inelastic
problems. However, the present authors, in two recent publications[14, 15], have used this idea
to calculate stresses near crack-tips in planar bodies undergoing time-dependent inelastic
deformation. The governing nonhomogeneous biharmonic equation for the rate of the stress
function is transformed into an integral equation using augmented kernels which guarantee
traction-free cutouts. Stress histories for cracked plates undergoing Mode I and Mode II
deformation have been obtained numerically for various cases and these are presented in Ref.
[15].

The inelastic deformation of cracked plates loaded in anti-plane shear (Mode III) is the
subject of this paper. In this problem the rate of the stress function satisfiell Poisson's equation.
The paper begins with the well known single layer potential solution for Laplace's equation in a
simply connected finite domain. A region with a cutout is considered next and the kernels are
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augmented so that the new kernels guarantee that the cutout surface is traction free. Explicit
kernels for elliptical cutouts are obtained by using a method analogous to the circle theorem of
Milne-Thomson [16]. Integral equations for the stress rates are derived and it is proved that this
formulation gives single valued displacements on the cutout. These integral equations are
solved numerically and numerical res.ults are presented for the time-dependent redistribution of
stresses near the crack tips. The plate material is modelled by the elastic-power-Iaw creep
constitutive equations and the stationary cracks are modelled as very thin ellipses. These
numerical solutions complement analytical solutions for stresses near crack tips in creeping
solids obtained by asymptotic methods[l7]. However, in this analysis, elastic and nonelastic
strains are allowed to coexist near the crack tip. Thus, the complete equations are solved
everywhere and there is no need to match near and far field solutions. Also, a single valued
displacement field is assured on the crack surface.

GOVERNING DIFFERENTIAL EQUATIONS

A planar body, with the XI and X2 axes in the plane of the body and the X3 axis normal to it,
is loaded in anti-plane shear. The nonzero stress components are 0'31(= 0'13) and 0'32(= 0'23) and
a stress function ell is defined in the usual way such that

(1)

The nonzero strain rates, E)I and En, are linearly decomposed into the elastic and nonelastic
rates, so that the compatibility equation, in rate form, is

(2)

Using Hooke's law to write the elastic strain rates in eqn (2) in terms of the stress rates and
writing the stress rates in terms of ell from eqn (1), results in Poisson's equation for the rate of
the stress function

(3)

where V2 is the Laplacian operator in two-dimensions and G is the shear modulus of the
material.

Only traction boundary conditions are allowed in this analysis. The traction 7) == 7 at any
point on the boundary of the body equals the tangential derivative of the stress function

dell
7=-

dc

where c is the distance measured along a boundary in an anticlockwise sense.

BOUNDARY ELEMENT FORMULATION

(4)

Simply connected body
The Poisson's equation (3) can be transformed into an integral equation by using a single

layer potential

(5)

where C is the boundary density function (or the source strength function in the language of
ftuid dynamics) to be determined from the boundary conditions, s is the distance between the
source point p (or P) and the field point q (or Q) (where lower case letters denote points inside
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Fig. 1.

the body Band capital letters denote points on its boundary aB (Fig. 1» and

This equation can alternatively be written in terms of the kernel

K =Re[~(z, zo»)

as

2'11'4»(P)=" K(P,Q)C(Q)dcQ+ ( K(p,q)C<")(q)dA.,hB JB

where

~(z, zo) = In (z - zo),

7SS

(6)

Re denotes the real part of the complex argument and z and Zo are the source and field points
respectively (see Fig. 1).

Body with cutout
Augmented kernels. The singular kernel K is augmented with regular kernels such that the

sum of these guarantee a traction free cutout. Let the cutout boundary be aB. (Fig. 2). If the
stress function 4> is constant on aB.. the traction on it is zero by virtue of eqn (4). This constant
can be taken to be zero without loss of generality.

Suppose first that the cutout is a unit circle. Let a function ~. be defined as

~*(i, zo) =-In (i- zo)

Fig. 2.
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This function has the following properties
(a) t/J* satisfies Laplace's equation.
(b) t/J* is regular outside the unit circle Izi =1.

(c) t/J(Z, i, Zo) =~(z, Zo) + t/J*(z, zo) = In (z - zo) -In G- zo) (7)

vanishes on the unit circle Izi = 1.
Thus, if a kernel defined as the real part of t/J is used in a formulation analogous to eqn (6)

for a body with a circular cutout, the cutout will be traction free. The derivation of t/J* is
analogous to the circle theorem of Milne-Thomson[15] for two-dimensional irrotational in­
compressible inviscid flow of a fluid past a circular cylinder.

The function t/J* for an elliptic cutout is derived by making use of conformal mapping
techniques. The mapping function

1
z= w(f)=-+m{

{
(8)

transforms the region on and outside an ellipse in the z plane to the region on and inside a unit
circle in the { plane (see Fig. 1 in Ref. [15]). The parameter m =(a - b)/(a +b) (with
(a +b)/2 =1) in terms of the semimajor and minor axes, a and b respectively, of the ellipse.
Thus, m=1 represents a line crack. Now

~ = In (z - zo) = In G+ m{ - zo) = In m+In U- '0) +In (1- ,d{) (9)

where 'o,/=(zo±V(z02-4m)/2m) are the roots of m{2- zo{+I=0 with l'ol~l, I,/Isl and
{=(z ± V(Z2 - 4m )/2m) with /{I:s; 1.

The last term in eqn (9) has singularities at {= 0 and {='j inside the unit circle in the {
plane. For this case, let

t/J* = -In m-In ({ - '0) -In (1- ,i)

so that

t/J(z, i, zo) =~ +t/J* =In (1- ,//{) -In (1- ,i). (10)

This function vanishes on the unit circle I{/ = 1(and therefore on the ellirtical cutout in the z
plane) and satisfies the other properties required of the augmented kernel.

Single valued displacement on cutout boundary. The only nonzero displacement U3 must be
single valued on the cutout boundary, i.e. it is required that

(11)

This equation can be written in terms of the stress function 41 by extending the analysis of
Sokolnikoff[18] for the torsion of hollow beams, to this nonelastic case. The resulting equation
is

(12)

where D is the unit outward normal to the cutout surface (Fig. 2) and

(13)

Note that V· O<"l =('<"l.



Boundary element analysis 757

Integral equations for stresses and tractions
Integral equations. The time-histories of the stress components 0'31 and 0'32 are of primary

interest in this analysis. Thus, it is convenient to write integral equations directly for the stress
rates using differentiated versions of the kernel t/J. For a body with an elliptic cutout (Fig. 3), the
equations for the rates of stress are (with i, k =I, 2)

(14)

where the augmented kernels H3j are

H31 =Re [~(z, z, zo)] =1m (*-*)
H32 =-Re [~(Z'Z,zo)]=-Re (*+*) (IS)

with t/J given in eqn (10).
The first two terms in eqn (14) are analogous to eqn (6) and the last term, which represents a

layer of concentration D' J)lR) on the cutout boundary aB.. is necessary for obtainilll single
valued displacements on aBa• This is proved in the next subsection.

The boundary conditons for the problem are specified in terms of traction rates on the outer
boundary aB2• The traction rates are obtained from eqn (14) by takilll the limit as p in B
approaches a point P on aB2• In taking this limit, care must be taken to obtain the residues from
the singular kernels. It can be shown that for the rates of stress

if

then

211'cT3j(P*j =k(p*)

211'cT3j(P*) =k(P*) +1I'Ij(P*) C(P*) (16)

where p* is infinitesimally close to P*, aB2 is locally smooth at p* and tj(P*) are the
components of the unit (anticlockwise) tangent vector to aB2 at pt. The function k(p*) is an
abbreviation for the right hand side of eqn (14). This implies that the residue is zero for the
traction rate and equals C(P)/2 for the stress rate component cT3c tangential to the boundary.

n
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The traction rate therefore, for a point Pon aB2 where it is locally smooth, is, from eqn (14)
(with i, k =1,2)

21ri(P) = f. H3j(P, Q)nj(P)C(Q) dCQ +1H3j(P, q)nj(P)C<")(q) dAq
aB2 ~

- 1. H3j(P, Q)nj(P)D.llI)(Q)n.(Q) dCQ- (17)
hBI

The boundary integrals in the above must be interpreted in the sense of Cauchy principal
values. It can be proved that H3, and H32, with an arbitrary source point, are independent of
the position of the field point provided it lies on the elliptic cutout. This makes the last terms in
eqns (14) and (17) considerably easier to evaluate.

Proof of single vailled displacements on elliptic ClltOllt bOllndary. The normal derivative of
41 at a point P an oBI (see Fig. 2) from eqn (14), is

211' :: (P) =211'(0'3.112- 0'3111 ,)= tBl Re [*(P, Q)] C(Q)dcQ

+IB Re [*(P, q)] C<")(q)dAq +£Bl Re [*(P, Q)] D.(II)(Q)n.(Q)dCQ (18)

the positive sign on the last term being a consequence of the fact that n is the outward normal
to aB,. The normal derivatives of the kernel. are evaluated at the source point P on aB•..
There is no extra term due to a residue in this case.

The proof of eqn (12) for single valued displacements on aB, rests on the fact that, if the
cutout is elliptiptic

(19)

Proof of eqn (19) is sketched briefly below. The above result is also true in the limiting cases
when the cutout is a circle or a line crack.

If a source point lies on the elliptical cutout aB.

z =(1 +m) cos a +i(1 - m) sin a

t=e-i«

where O:s a :s 211'.
Let 11. and "2 be the components of the outward normal to aB. at some point on it. Then

~ . ei«-me-i«
n =", +ln2= v'(1 +m2-2m cos 2a)

and a line element on the ellipse

dc = v'(1 +m2-2m cos2a)da.

Let an arbitrary field point Zo yield the root (see below eqn (9»

_ -if ( P=1if Zo is on oBI )'j -Pe, P< I if Zo is outside oB. .

Using all the above equations and eqn (10) for .(z, i, zo),

[~ ] _ [!i ~ !i..~] _ 2(1- 8 cos (a - 6»
Re dll (P, q) dcp - Re oz" + ai 11 dcp - 82-28 cos (a _ 6)+ I da

where 8= liP 2! 1, K=n.- in2 and P is on aB,.
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which proves eqn (19).
Finally, integrating both sides of eqn (18) around aB Io and evaluating first the integrals around

aB. in the resulting double integrals on the r.h.s. of eqn (18),

21T 1. :cli dc = 21T 1. D.(n)n. dc
j~BI n j~BI

which proves eqn (12).

NUMERICAL IMPLEMENTATION

Discretization of equations
The outer boundary of the body, aB2 (Fig. 3), is divided into N2 straight

boundary elements using N"(N,, =N2) boundary nodes and the inner boundary aB I into NI straight
boundary segments. The interior of the body, B, is divided into n; triangular internal elements. A
discretized version of eqn (17) is

2ri(PM ) =~ r H3j(PM, Q)nj(PM )C(Q) dCQ +~ r H3j(PM, q)nJ(PM )c<nl(q)DAq
1:1; J6c; n/ J6.4/

- H3j (PM, 6)nj (PM )~ f6Cj D.(nl(Q)n.(Q) dCQ (20)

where 1(PM ) are the traction components at the point P which coincides with the node M at
the center of a segment on aB2, !:ic; and !:iA; are boundary and internal elements respectively
and 6 is any point on aB•.

A very simple numerical scheme is used in which the concentrations C are assumed to be
piecewise uniform on each boundary segment with their values assigned at the nodes which lie at
the centers of each segment. The nonelastic strain rates i~j are interpolated linearly over each
triangular internal element so that c<nl is uniform within each element. For the problems
considered in this section, the last integral in eqn (17) can be shown to vanish, Le. in these cases

by virtue of the stress pattern and the constitutive model. Hence the last term in eqn (20) is
omitted in these calculations. In any case, in general, this term requires the evaluation of a
known integral on aBI at each time step.

The integrals of H3j on boundary elements are evaluated analytically for the singular and by
Gaussian quadrature for the regular portions. Integrals of H3j on a triangular internal elements
are obtained by Gaussian quadrature. This is adequate in these problems with the source points
lying on the vertices of the traingles.

Substitution of the piecewise uniform source strengths into eqn (20) and carrying out of the
necessary integrations leads to an algebraic system of the type

{oi} =[A]{C} +{d}. (21)

The coefficients of the matrix [A] contain boundary integrals of the kernels. The traction
rates are prescribed, the vector {d} contains the contributions from the area integral and the vector
{C} the unknown source strengths at the boundary nodes. The dimension of the unknown vector C
depends only on the number of boundary elements on aB2•

Equation (14) for the stress rates at an internal point pare discretized in a similar fashion.
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Solution strategy
The power law creep constitutive model, used to describe material behavior, has the

form [19]

Eij =Eij+ Eli
'11 3 Eft

Eij ='r;; Sij

'ft ,( (T)moE =E ­
e (Te

where the stress and strain rate invariant are defined as

(T =y'«3/2)sijsij), Eft =y'«2/3)Eliiij)

(22)

with Sij the deviatoric part of the stress tensor (Tib Ee and (Te the reference strain rate and
reference stress rate, respectively, and mo the index of the power law.

The solution strategy is as follows. The initial stress field is obtained by solving the
corresponding elastic problem. The initial rates of the nonelastic strains are obtained from the
constitutive model (22). The vector din eqn (21) is calculated next, and this, together with the
prescribed rates of boundary tractions, are used to calculate the initial distribution of concen·
tration C onto aBI' These concentrations are now used in the discretized version of eqn (14) to
calculate the initial stress rates throughout the body.These rates are used to determine the values of
the variables afterasmall time interval At and so on,and in this way the time histories of the relevant
variables are obtained, Time integration is carried out by an Euler type step·wise procedure with
automatic time-step control. This method is described in Refs. [15,20].

NUMERICAL RESULTS AND DISCUSSION
Material parameters

The material parameters for stainless steel at 4O()OC, used in these numerical calculations,
are[l9]

G =9.4X 100psi

it' =0.277 X10-3 S-I eTc =0.1806 x 10' psi

mo=7.

Numerical results
Elastic solution. In order to check the program, an elastic solution is first obtained for a

finite plate with a line crack (m =1) loaded in anti-plane shear. The stress distribution has a
pattern which makes it possible to deduce the stresses in the entire plate from the stresses in
the first quadrant. Thus only a quarter of the plate (the first quadrant in this case) is discretized.
Eight boundary nodes are placed uniformly along the edges of the plate in the first quadrant.
The elastic solution for (T32, obtained numerically, has the proper square root sinaularly near the
crack tip. The calculated value of the stress intensity factor is within 5% of the analytical
solution for an infinite plate with a crack[21].

Nonelastic solutions. A stationary crack is modelled as an ellipse with axis ratio 199
(m = 0.99) except for the results shown in Fig. 8·where alb = 1999 (m = 0.999). The cracked
plate is loaded in anti-plane shear as shown in Fig. 4(a). Once again, only a quarter of the plate
is discretized. Twenty boundary nodes are distributed uniformly along the edges of the plate in
the first quadrant. High concentrations of stresses and consequently strain rates, are present
near the crack tips. Therefore, only the region very near the tip of the major axis of the ellipse
is discretized into internal elements (FIgS. 4a and 4b) and it is assumed that all the nonelastic
contribution to the stress rates in eqn (14) is obtained from this discretized area. (As stated
earlier, the last term in eqn (14) is zero in these problems.) Thus, in addition to the fact that the
number of unknowns depend only on the number of boundary elements, evaluation of area
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Fig. 4. Internal elements for 1 cracked plate loaded in antipllne shear.

integrals by quadrature is greatly simplified by the fact that only a small portion of this area
needs to be discretized. Input time as well as computational time is reduced since relatively few
internal elements are necessary. These simplifications are important advantages of the boun­
dary element method relative to the finite element method and lead to substantial savings in cost.

The decrease of stress concentration at the crack tip as a function of time, for the case of
constant remote stress, is shown in Fig. 5. The decrease is due to flow of the material near the
crack tip and consequent accommodation of stress. The redistribution of stress concentration
with time along the line X2 = 0 near the crack tip is shown in Fig. 6. The near field stress
distribution tends to even out with time.

Figure 7 shows the drops in stress concentration at the crack tip as functions of time for two
different rates of remote loading. Stress relaxation is less at the higher loading rate since there
is less time for nonelastic flow in this case. Also, very little stress relaxation takes place at very

c:
.2 150
~
C
~c: 100
o
(.)

::
! 50
u;

o 2000 4000 6000
Time (s)

Fig. S. Stress concentrationat crack tip as afunctionof timeforconstant remote stress 0'» .. l000psi. alb = 199.
Initial stress concentration .. 204.
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Fia. 6. Stress redistribution alolll the line %2 .. 0 in cracked plate for constant remote stress Un .. 1000 psi,
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Fia. 7. Stress concentrationat crack tip as functions of remote stress for remote stress inc:rcasinaat aconstant
rate. tJ/b .. 199.

short times while the remote stress is builiding up. The stress concentration at Iarae values of
the remote stress is of the same order as the long time values from Fia. S for the constant
remote stress case.

Finally. Fig. 8 shows the drop in stress concentration at the crack tip when the crack is
modelled as a very sharp ellipse of axis ratio 1999. There is no numerical difficulty in carrying
out this calculation since. as stated before. the effect of the crack is included in the kernel and
the only unknow quantities in the algebraic equations are on the outer boundary of the plate. In

8 2500
~
b....
~ 2000
b

50o 100 150 200 250
Time (s)

Fia. 8. Stress concentration at crack tip as a fundion of time for constant remote stress 0']2" 1000 psi.
tJ/b .. 1999.
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this case, a different internal mesh is used. This mesh is not shown here in the interest of brevity
but is included in a report with the same title [22).

The numerical results presented in this section are stable. A typical c.p.u. time on an IBM
370/168 computer is 179 sec for the results shown in Fig. 8 for m=0.999.

CONCLUSIONS

The boundary element formulation with augmented kernels used in this paper is very
efficient for the analysis of stresses in cracked plates undergoing inelastic deformation. The
primary reasons for this claim are as follows.

(1) The proper boundary conditions on the crack boundary are satisfied in an implicit
manner.

(2) The only unknowns appear on the outside boundary of the plate.
(3) Internal discretization is required over only a small region near the crack tip. Area

integrals over this region involve known integrands at every time step and these are evaluated
by quadrature over relatively few internal elements.

(4) No apriori assumptions regarding the stress distribution near the crack tip need to be
made.

The method yields stable numerical results for different histories of remote loading even for
a crack modelled as a very thin ellipse of aspect ratio near 2000.
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